Mike Halling 1/22/92 PBAR NOTE #519

Measurement of Transverse Beam Size in Accumulator as a Function of Momenta During Stacking

ABSTRACT

The horizontal and vertical emittance as a function of momentum was measured in the accumulator while stacking with a small stack. The data suggests that the transverse emittance of the beam is blown up between the injection orbit and the stacking orbit. The technique shows promise, and should be repeated with a large stack to measure the emittance in the accumulator at a time when we have large losses.

MOTIVATION

We often observe large loss of beam in the accumulator during stacking, especially with large stacks. We have excellent diagnostics that show us what is happening in longitudinal phase space while stacking, and we have transverse emittance measurements of the core; but there are many other physical quantities necessary to fully describe the beam in the accumulator. We often experience periods of poor stacking efficiency with both of these diagnostics showing good operating conditions, which suggests that the beam loss is in an area insensitive to these diagnostics. This report shows the first measurement to my knowledge of the emittance of beam at momenta different than the core while stacking.

TECHNIQUE

These measurements were made by scraping the beam away with the horizontal and vertical scrapers. Since the measurements took as much as an hour to complete all accumulator cooling systems were turned off for the duration, as well as ARF1 and the injection kicker. The beam shakers were also off but the dampers were on. A spectrum analyzer was used to measure the fraction of particles remaining at each scraper position. Since the measurement occurred over many minutes with all RF and cooling off, and occurred at low intensity, it is unlikely that coherent signals contaminated the spectrum analyzer measurement of the particle density. It is also apparent from the raw data that longitudinal diffusion was small at the low stack size used in the measurement.

The position of the closed orbit was measured by moving the scraper in small .3-.5 mm steps until no beam was visible on the spectrum analyzer. For the horizontal measurement this process was performed both with beam on the core orbit and beam moved over to the injection orbit with ARF3. The change in the closed orbit position from core to injection orbit is about .5 mm, in good agreement with independent results using the BPM system. For the vertical measurement the closed orbit was measured at three locations, the core orbit, the injection orbit, and the stacking orbit. The change in the closed orbit location from core to injection orbit was 2 mm, also in good agreement with recent BPM data. The dispersion in each dimension was assumed to be linear in the calculation of the emittance below.

BEAM PREPARATION

The data shown below were taken on 1/13/92 during the first four hours of stacking. Due to the short amount of time and pbars allocated to this measurement the emittance was measured with stacks of about .5 ma with a cycle time of 2.4 seconds. This is before a proper core has formed in the accumulator. In addition, the main ring was delivering wider bunches than normal, and the source was not completely tuned up since it had just been turned on after reverse proton studies. ARF1, which often shows bad behavior, was certified at the time as being in working condition. Due to these limitations this measurement should be considered a proof of technique rather than the absolute last word on what is happening in the source with large stacks.

The procedure of obtaining a beam sample was as follows. After about 20 minutes of uninterrupted stacking the three core cooling systems were turned off. ARF1 was then turned off using A:R1APSV, and roughly 4 seconds later the stack tail system was turned off. For some reason I also opened the injection shutter at this point. ARF1 was then turned on/off for one beam pulse in the middle of the supercycle to trap beam on the stacking orbit. A:IKIK was then turned off after a pulse in the middle of the supercycle to trap a fresh pulse on the injection orbit.

THE DATA

Figure 1 shows two spectrum analyzer traces, one just after stacking was stopped and one with the A:RJ500 at 16.06 mm. closed orbit location is at about 11.5 mm. An averaging function similar to the video bandwidth function has been applied to the raw spectrum analyzer data to smooth out small fluctuations. emittance were the same at all momenta the vertical distance between the traces would be constant. The ratio of the power levels between the two traces gives a measurement of the fraction of particles scraped away between the two measurements. Making the assumption that the particle density in transverse phase space is gaussian I use a lookup table to calculate, SIGMAS, the number of sigma from the mean of a gaussian distribution such that the integral for O-SIGMAS is consistent with the measurement with the scraper. For instance, if I cut away 5% of the beam then If I cut 10% then SIGMAS=1.6. From the position of the scraper I calculate the area in phase space contained between the scraper location and the closed orbit, PHSPC=(16.06-11.5)**2/14 in the above example. The 95% emittance is then equal to 2*PHSPC/SIGMAS.

Figure 2 shows the measured horizontal emittance for scraper positions of 18.24 mm, 17.49 mm, 16.74 mm, 16.06 mm, 15.35 mm and 14.71 mm. Momenta with small amounts of beam have an emittance of zero in the plot. The fact that the curves lie on top of each other demonstrates that the particle distribution is gaussian and

centered in phase space. The measured emittance of 6 pi at the injection orbit is larger than that measured in the debuncher in an earlier measurement. Figure 3 is simply a superposition of Figures 1 and 2.

Figure 4 shows the raw spectrum analyzer plots taken with A:TJ307 out, at 5.57 mm, 2.71 mm, 1.47 mm, and -1.01 mm. central orbit is at about -4.2 mm at the injection orbit and -2.2 mm near the core. It is obvious from the plots that the distribution of particles in phase space is different between the stacking orbit and the injection orbit. Figure 5 shows the calculated emittance distributions for the scraper at 7.23 mm, 6.48 mm, 5.57 mm, 5.01 mm, and 4.18 mm. All the curves again fall on top of each other verifying that in this range the gaussian approximation is good. There is an apparent blowup of the emittance on the stacking orbit, which leaves the emittance on the stacking orbit dangerously close to the aperture limit. Even more ominous is the emittance calculated using the spectra taken with the scraper in the 3.28 mm, 2.71 mm, and 2.11 mm positions, in Figure 6. The fact that the calculated emittance is larger than that in Figure 5 indicates that the beam does not have a gaussian distribution in phase space, but rather has a hollow distribution.

By calculating the difference between the successive spectra and dividing by the change in phase space area between each measurement I obtain the phase space density distribution of particles on the injection and stacking orbits, shown in Figures 7 and 8. Hand drawn curves are shown in Figures 7 and 8 to guide the eye. On the injection orbit the distribution is centered about the central orbit and looks somewhat gaussian. On the stacking orbit the distribution is clearly depleted near the central orbit.

DISCUSSION OF RESULTS

The beam on the injection orbit is about 6 pi in each dimension. This is much higher than the emmittances of 3-4.5 pi horizontal and 3-3.5 pi vertical measured in the debuncher just before extraction. The data also shows an obvious increase in the

effective emittance as the beam moves from the injection orbit to the stacking orbit, then a decrease as the beam moves towards the core. This effect is more pronounced in the vertical dimension than the horizontal dimension. It is remotely possible that ARF1 causes this blowup, after which the beam is cooled by the core cooling system. My simple calculation of the time delay of the 4-8 GHZ cooling system shows that it cools down to about 79.241/126 MHZ.

Another piece of information that might be useful in explaining this effect is is the fact that there is very strong coupling in the accumulator. Figures 9-12 show measurements of the accumulator tunes taken on the same day as the data described above. There is very strong coupling near the central orbit, and it is impossible to identify the horizontal from the vertical tune at the injection orbit. It is altogether possible that the tunes were crossed at this time, as they were in two earlier measurements shown in Figures 13 and 14. The effects of coupling on emittance measurements will be the subject of another PBAR note.

FUTURE MEASUREMENTS

This technique appears to work, and shows promise of adding to our knowledge of stacking losses. Unfortunately, the emittance in the accumulator with 0.5 ma stacks is not a very interesting thing to measure. What is interesting is the emittance with large stacks, when as many as 50% of the incoming phars are lost somewhere in the accumulator. This measurement should be repeated with a large stack at a time when we are experiencing large losses. Since we now know the position of the closed orbit it is only necessary to scrape off about 5% of the phars in each dimension to make the measurement.

The present scraper system makes this measurement very awkward, time consuming, and dangerous to make on a regular basis. I am convinced that these measurements will be useful in the future, and therefore propose that we build at least one

scraper in each dimension that reliably moves to the position it is told with one command with no danger of overshoot.

CONSOLE LOCATION 43, 22-JAN-1992 14:27 Pbar \$A Plot

CONSOLE LOCATION 43, 22-JAN-1992 14:24 Pbar SA Plot

CONSOLE LOCATION 43, 22-JAN-1992 15:53

Pbar SA Plot

FIGURE 4

CONSOLE LOCATION 43, 22-JAN-1992 14:33 Pbar SA Plot

CONSOLE LOCATION 43, 22-JAN-1992 16:02 Pbar SA Plot

CONSOLE LOCATION 43, 22-JAN-1992 16:49

1/13/92 Log 18, P19

Figure 9

13.3 Volt 19.1 2.990 2.360/0086 14th 10 53.25 12.1 -7.65 807 2.545 (1) 6 = 10.8 -6.21 654 2.090 (1) 54.25 = 9.04 -4.45 465 1.505 (1) 70.25 = 7.02 -2.45 250 0.840 (1) No signal -8.975 951 2.980 2.360159 (content) See hardcopy log fan synchrotran frequency plots Deta will be analyzed later. 66:000 measurement of times across Area aperture: [500 ph Qu	.3 mA beam	and the state of t	Mroc Volt>	vo lts	Lecroy	₹ 19
(1) $\frac{72.50}{6} = 12.1$ -7.65 807 2.545 (1) $\frac{6}{6} = 10.8$ -6.21 654 2.090 (1) $\frac{64.25}{6} = 9.04$ -4.45 465 1.505 (1) $\frac{70.25}{6} = 7.02$ -2.45 250 0.840 (2) No signal -8.975 951 2.980 2.360159 (canter) See haredcopy log for synchrotron frequency plots Doba will be analyzed later. 06:000 measurement of times across Acc apenture: See hardcopy log for synchrotron frequency plots Doba will be analyzed later. See hardcopy log for later which is which is which (coupling) 628724 614 606 can't tell which is which (coupling) 6287846 614 607 607	53.25	13.3	A CONTRACTOR OF THE SECOND	951	2,990	2.36010086
(13) $\frac{64.36}{6} = 10.8$ -6.21 654 2.090 (13) $\frac{54.25}{6} = 9.04$ -4.45 465 1.505 (14) $\frac{70.25}{6} = 7.02$ -2.45 250 0.840 (15) No signal -8.975 951 2.980 2.360159 (center) See hardcopy log for synchrotron frequency plots Detu will be brighted later. (center) 5ee hardcopy log fo Pit QV .628724 .614 .606 can't tell which is which (coupling) .628725 .625 .601 how about these resonances, eh? .62896 .614 .607	opport.		-7.65	807	2.545	
(1) 54.25 = 9.04 -4.45 465 1.505 (4) 70.25 = 7.02 -2.45 250 0.840 (5) No signal -8.975 951 2.980 2.360159 (center) See hardcopy log for synchrotron frequency plots Detur will be analyzed later. 06:000 measurement of times across Area aperture: See hardcopy log			-6.21	654	2.090	
(4) 70.25 = 7.02 -2.45 250 0.840 (5) No signal -8.975 951 2.980 2.36 0159 (center) See harecopy log for synchrotron frequency plots Data will be analyzed later. 66:00 measurement of times across Area apenture: See hordcopy log fo Pit QV .628724 .614 .606 can't tell which is which (coupling) .628725 .625 .601 how about these resonances, eh? .628916 .614 .607			-4.45	465	1.505	4
(conten) See hardcopy log for synchrotron frequency plots Data will be analyzed later. Doi:000 measurement of times across Aca aperture: See hardcopy log		4	-2.45	250	0.840	
See hardcopy log for synchrotron frequency plots Deta will be analyzed later. 06:000 measurement of tones across Aca aperture: See hardcopy log	'		-8.975	95L	2.980	2.360159 (center)
66:000 measurement of times across Are aperture: See handcopy log	6.04	harde	opy log	for syn	chrotron freq	vency plots
fo Pit QV .628724 .614 .606 can't tell which is which (coupling) .628785 .625 .601 how about these resonances, eh? .628916 .614 .607 .628901 .618 .607					Aca apentur	e. E:
.628724 .614 .606 can't tell which is which (coupling) .628785 .625 .601 how about these resonances, eh? .628846 .614 .607 .628901 .618 .607	00.00g M			56	ze handcopy los	
.628785 .625 .601 how about these resonances, eh? .628846 .614 .607 .628901 .618 .607	f	Pit	- Q _V			
.62896 .614 .607	.628724	-614	,6 06	can't tell c	shick is which	(compling)
.628901 .618 .607	.628785	.625	-601	how about t	these resonance	es, eh :
	.628846	-614	.607	And the second s	was a second of the second	
.628954 .615 .611	.628901	-618	.607	and the second s		and the second s
	.628954	.615	-61]	A CONTRACTOR OF THE SAME WAS A CONTRACTOR OF THE SAME		
		1	<u> </u>			

obite Measure transverse accommulator aperture on the injection orbit. Clase shutter when injecting to keep beam out of cone and center.

AH = 8.6T , AV=8.1T

See hardcopy log

End of reverse proton studies.

ACCUMULATOR

01/13/92 0632

BEAM CURRENT	1.268 mA
HARMONIC NUMBER	126
REV FREQUENCY	628958 Hz
DELTAP/P	.2916 %
HORIZONTAL TUNE	.6156
VERTICAL TUNE	.6112
HORZ EMITTANCE	.7782
VERT EMITTANCE	.4593
HORZ CHROMATICITY	.6425

628956 core

CENTER 79.007MHz SPAN 18.9KHz

LOWER HORIZONTAL SIDEBAND

REF -30 dBm

PK TUNE1 .616 CM TUNE1 .615

MKR 79.0071MHz

TUNE

REF -30 dBm MKR 79.0013MHz TUNE .618 -CM TUNE1 .618

LOWER HORIZONTAL SIDEBAND

иртн1 2.58KHZ CENTER 78.999MHZ SPAN 18.9KHz

ACCUMULATOR

01/13/92 0627

BEAM CURRENT	1.269 mA
HARMONIC NUMBER	126
REV FREQUENCY	628901 Hz
DELTAP/P	.2631 %
HORIZONTAL TUNE	.6185
VERTICAL TUNE	.6072
HORZ EMITTANCE	.7969
VERT EMITTANCE	.4605
HORZ CHROMATICITY	-1.031
VERT CHROMATICITY	2.921

@ .628901

ACCUMULATOR

01/13/92 0622

BEAM CURRENT	1.271 mA
HARMONIC NUMBER	126
REV FREQUENCY	628847 Hz
DELTAP/P	.2335 %
HORIZONTAL TUNE	.6142
VERTICAL TUNE	.6072
HORZ EMITTANCE	. 9594
VERT EMITTANCE	.4871
HORZ CHROMATICITY	.2928
VERT CHROMATICITY	.2806

@ 628846 center

LOWER HORIZONTAL SIDEBAND 1.68KHZ CENTER 78.985MHz SPAN 18.9KHz

ACCUMULATOR

01/13/92 0617

BEAM CURRENT	1.3 mA
HARMONIC NUMBER	126
REV FREQUENCY	628786 Hz
DELTAP/P	.216 %
HORIZONTAL TUNE	.626
VERTICAL TUNE	.6014
HORZ EMITTANCE	.8272
VERT EMITTANCE	.7714
HORZ CHROMATICITY	-1.534
VERT CHROMATICITY	2.921
6	

G= .628785

ACC LONGITUDINAL SCHOTTKY

Figure 17

